An example of erroneous mixing of concerns:
val print_info = function(x){ console.log('Variable x is of type "'+typeof(x)+'" and have the value of "'+x+'"); } var x = "123"; // Variable x is type string with value "123" print_info(x); x-=0; // Variable x has now type number with value 123 print_info(x);Output is;
Variable x is of type "string" and have the value of "123" Variable x is of type "number" and have the value of "123"
The above example is a really simple but important aspect on mixing concerns but most of the time these things are more subtle and not so obvious.
There are several pitfalls when designing code and knowing when you are making good decisions when building software. One good rule is the "Gun rule" which is quite simple:
A modern gun today has very good separations of concerns (although a very despicable piece of technology). Most notably you have the bullet as an example on excellent separation of concerns. You can manufacture bullets separately but still deliver functionality, there are even room for making modifications to the bullets without needing to change the gun. Obviously there are certain factors you can't change without changing the gun, such as size.
One other factor is that a gun is useless without a bullet and a bullet is equally useless without a gun, so in functionality they are tightly coupled. For the gun to work you need to deploy the bullet with the gun. And this is a good indicator how they should be deployed, they should be deployed together. If you need different release cycles for them, you should separate them into two deployments artifacts, but they should share resources. This is really facilitated by Java VM by using dynamic class loading (one really good feature but for some reason not very well understood), other technologies might have problems with this and might require a full restart.
If you now equip the gun with a scope or perhaps a laser pointer this sure makes the gun better, but it is not entirely necessary for the operation of the gun. The gun will work with and without those additions and they are good separations of concerns by themselves. These are candidates for deploying on their own.
One misconception is that just because you need a different release cycle or you have identified a module with good separation of concerns, you need to deploy it on a separate instance. With the gun as an example; having a gun in one hand and the bullet in another doesn't render it more useful or more modular, though in fact it seems like a good idea and adheres to certain architectural ideas. If this idea should be brought to an extreme you should deploy each class in a separate runtime, but that however doesn't make it more modular or better.
You should look for those things which are possible to remove, but still maintain functionality. In fact being able to remove whole blocks of functionality without impacting function is a good indicator of good separations of concerns (adding them is the same). If you have to tear something apart is an indicator its not separated enough.
There's also another thing which is overlooked with separations of concerns is that too much effort is spent on making abstractions. So much abstractions actually harms your separation of concerns, everything is so abstract you have really no idea what happens.
As an example; instead of using a specific object to be able to "tunnel" data through layers you decide yo use a map like this:
interface SomeInterface { public abstract void someMethod(Map<String, String> map); }
This is convenient because you could now cut through anything just because Map and String are both in a library which happens to be global. Now you can also bunch things together, which modularly, shouldn't be together and more important there's nothing that stops you to add more things which makes no sense at all. Fortunately in Java one could do this instead:
interface SomeInterface { public abstract void someMethod(Object map); }And then cast it to the Map